

F1/10 YellowTails

Technological Feasibility
Assessment

Bowen Boyd
Hanyue Wang
Kyle Watson
Jordan Wright

Faculty Mentor​:

Isaac Shaffer

Project Sponsor​:
Truong X. Nghiem, Assistant Professor, SICCS, NAU

Trong-Doan Nguyen, PhD Student, SICCS, NAU

11/08/19

Table of Contents

1. Introduction 3

2. Technical Challenges 5

3. Technology Analysis 7
3.1 Graphical User Interface 7
3.2 Automatic Documentation 11
3.3 Unit Test Library 17
3.4 Communication Method 21

4. Technology Integration 26

5. Conclusion 28

1

1. Introduction
F1/10 Yellowtails is a team that was formed with the goal to improve access to the F1/10
autonomous racing platform. The members of F1/10 Yellowtails are Bowen Boyd, Hanyue
Wang, Kyle Watson, and Jordan Wright. We are creating a new autonomous racing interface
system called RosConnect. The project is sponsored by Dr. Truong Nghiem and his graduate
research assistant Doan Nguyen. Dr. Nghiem is the Director of the Intelligent Control System
Lab, or ICONS lab, at Northern Arizona University. At the ICONS lab our clients are creating
new theories and algorithms for intelligent and high performance control systems. This includes
developing solutions for the transportation industry. Our clients are now focused on improving
algorithms for self driving cars.

Self-driving cars have proven to be the future of the automobile industry. The ever-growing need
for greater road safety, reduced road congestion, and environmental stability means that vehicle
autonomy advancements are particularly vital for society. This new, ever-growing industry needs
more engineers to help extend outreach to the general population and solve the problems that are
holding it back. However, there are currently no high-school programs that provide autonomous
technology education to students, especially those with limited coding experience. This lack of
access, to the emerging field of autonomous technology, results in potential engineers who
choose other fields and under-educated leaders of tomorrow.

Dr. Nghiem and Doan are creating a summer camp for high school students that focuses on
autonomous vehicles that lowers the barrier of entry to this technology. Through this new
learning opportunity they hope to get high school students interested in STEM and recruit them
to study at Northern Arizona University. The F1/10 autonomous racing platform is an RC car
that is one-tenth the size of a formula one race car. It is powered by an Nvidia Jetson computer
onboard the RC car and has sensors that you would find in a real self driving car. Our clients
want high school students to receive hands on experience with said RC cars to understand how
cars work.

The problem and premise for the creation of this project is that the F1/10 autonomous platform,
in its current state is complicated to operate. The Nivida Jetson runs the Ubuntu Operating
System which is then used to run the Robotic Operating System (ROS), in order to control the
car. Everything must be run from the command-line and ROS adds additional hurdles like the
need to source your workspace directory and use the Catkin compiler to compile your C code
which needs two other files to be correctly set up syntactically, with dependencies and the
correct parameters for the package you are trying to make. Changing one setting might also
require you to change multiple files in different directories.

2

Dr. Truong Nghiem, Doan Nguyen, and F1/10 Yellowtails aim to make ROS more accessible
and easier to use with RosConnect, a Graphical User Interface (GUI) for driving autonomous
F1/10 vehicles. With it’s intuitive design, this new interface system gives access to autonomous
racing to every high-school student, irrespective of her or his coding competency. Shortcuts
included in RosConnect such as node switches, drag-and-drop file fields, and kill switch controls
will not only provide a learning experience to any high-school student but also any researcher
interested in the F1/10 autonomous racing platform.

This document details RosConnect’s technological feasibility by analysing and discussing
several technologies that are key to its development. We begin in Section 2 by reviewing our
environment variableS and the primary obstacles we need to overcome to create RosConnect.
These obstacles include: GUI Framework, Auto Documentation, Testing Framework and
Communication Methods between pur software and the F1/10 car. In Section 3 we will take a
look at each obstacle individually and discuss technologies that can help us overcome each
technical challenge. Since our challenges are highly coupled, we will then explore, in Section 4,
a solution that connects each of the challenges in a sensible way. Lastly, we will present a
summary of our findings, a brief description of remaining open questions, and an explanation of
how we plan to address said questions, and can be found in Section 5.

3

2. Technical Challenges
Successfully building RosConnect requires overcoming several technological challenges. We
will begin by introducing a list of environmental constraints with a brief explanation. These
environmental variables demand no further analysis because of their fixed nature in relation to
our system design. We will then discuss the four primary obstacles that will drive the design
decisions necessary to create RosConnect.

2.1 Environmental Constraints
Raspberry Pi

The host machine to be used at the summer camp that will run ROS and RosConnect is a
Raspberry Pi. The Raspberry Pi will have an Ubuntu Linux OS on board and will be used to
communicate with the Nvidia Jetson board on the vehicles.

Ubuntu

Running ROS (our platform for robotics operations) requires a user to be running an Ubuntu
Linux Operating System.

Robot Operating System (ROS)

The F1/10 racing platform foundationally relies on the Robotic Operating System. This system
works as a framework using the concept of an OS. In general, ROS consists of code and tools
that help make the F1/10 vehicles run, including the infrastructure for running it, similar to
messages passing between processes.

ROS is designed to be a loosely coupled system where a process is called a node and every node
should be responsible for one task. Node communication is achieved via message passing
through logical channels called topics. Each node can send or get data from other nodes using the
publish/subscribe model. The primary goal of ROS is to support code reuse in robotics research
and development, and hence is our primary means of operation.

Node Communication

Nodes are simply instances inside ROS, which implies that any means of communication
between them is fixed to the ROS platform.

F1/10 Autonomous Platform

The RC car platform is a predetermined platform developed by a group at Penn University. The
platform is well documented so that all cars have the same components making races dependent
on a teams software.

4

2.2 Design Factors

2.2.1 Graphical User Interface
The current work flow of the F1/10 racing platform is using the command line to start and
navigate through ROS. We want the user to focus on understanding how ROS works and not
how to use the command line. High school students will be able to control the car by using our
software’s Graphical User Interface (GUI). Our GUI needs to guide high school students through
ROS so that they can use it to control the autonomous racing car. Our GUI also needs a kill
switch in case of an emergency situation such as losing the connection between our software and
the car or when the car goes out of control.

2.2.2 Auto Documentation
Documentation is one of the key tools that allows anyone to understand your codebase. Since our
project is for a high school summer program we want to document our project so that the
students can see how our code works. We are researching auto documentation tools to improve
our workflow and remove save time. In the end we will not have to worry about writing all the
documentation by hand and get more time to focus on our project.

2.2.3 Unit Test Libraries
After refactoring code, we as programmers must ensure that changes in our project’s system do
not break the design contract of said system. Unit Testing allows for this assurance. Since our
goal is to make RosConnect scalable, we will need to develop various combinations of files into
a working system of nodes to achieve autonomy. This means that we will have many unique
cases and implementing/testing each one separately is near impossible without a unit test library.

2.2.4 Communication Method
One of the core features of our software is sending data to the F1/10 RC Car and maintaining a
connection. Through this connection we need to be able to send a kill command and transfer data
from the car to our software. If we do not maintain some form of connection our kill switch will
no longer be able to send the kill command. Therefore, in case of emergencies we will have a
script that auto runs on the car checking connections and if it finds there are none, will activate
the kill command locally.

5

3. Technology Analysis
In this section, we will present a detailed analysis of the technologies necessary to create
RosConnect. For each category we will explain why we need or want that particular tool for the
creation of our system and then give metrics for how we will compare them. Lastly, we will
explain our choice and discuss how we are going to prove the feasibility of said choice in the
scope of our system.

3.1 Graphical User Interface

3.1.1 Overview of Problem
A GUI will help lower the barrier of entry for the high school students and is the backbone of our
project. By replacing the command line high school students will be able to work with ROS to
control the car. We also want to keep the system scalable so we want a rich feature set for our
GUI. Our client has requested that our GUI implements a kill switch for situations where we lose
control or connection in an autonomous robot race. The GUI will allow high school students to
use the F1/10 platform, and therefore should be clear and easy to read. A good GUI framework
will help us solve these problems.

3.1.2 Metrics

● Documentation
○ Multiple references of documentation will help better our understanding of a

given candidate framework by either providing more information than any single
reference or presenting the same information differently.

○ This metric will be based on the following references of documentation: Tutorials,
Books, Wiki, Repository/Git, and Open Source.

○ Scoring Method: 0-5 where 1 point is assigned per provided reference from
above, and 0 is assigned for a reference that is not provided.

● Testing Suite
○ The existence of a builtin testing suite will allow us to test our code faster, and

improve our work efficiency.
○ Scoring Method: 1 for YES, 0 for NO.

● Designer

○ The existence of a graphical interface designer will provide us with a tool for
easily creating a GUI layout.

6

○ Scoring Method: 1 for YES, 0 for NO.

● Familiarity
○ We want to take into account our team’s current experience working with a given

candidate framework to give us a sense of where our team’s starting point of
understanding is.

○ If more team members have experience with a framework, then we can
theoretically use and implement said framework more quickly and more easily.

○ Scoring Method: 0-4 with each point representing a team member who has
experience with the given framework.

3.1.2.1 Kivy
About
Kivy is a completely free-to-use cross platform Python GUI framework. Kivy is business
friendly and is under the MIT license. Kivy has the ability to handle animations, caching,
gestures, graphics and more. It also has built-in user interface controls such as buttons, cameras,
tables, slides, and tree controls. In regards to our project Kivy runs on Ubuntu. Kivy is an open
source toolkit that allows programs created with the same source code to run across platforms. It
focuses on innovative user interface development such as multi-touch applications. Kivy also
offers a multi-touch mouse simulator.

Analysis Overview
As can be seen in Table 1, the forms of documentation found for Kivy include tutorials, books, a
wiki page, and a Github repository which is open source. The testing suite for Kivy is a unit
testing platform which is located in the kivy/tests folder, and is separated into two parts: Non
graphical unit test and Graphical unit test. Additionally, Kivy does provide a graphical interface
designer called Kivy Designer. Lastly, only one of our teammates has experience with Kivvy.

Documentation Analysis

 Tutorial Books Wiki Repo/Git Open
Source

Total

Kivy 1 1 1 1 1 6

Table 1: Documentation Analysis for Kivy.

Results

● Documentation: ​6

7

● Testing suite: ​1
● Designer: ​1
● Familiarity:​ 1

3.1.2.2 PyQt
About
PyQt is a cross-platform toolkit for creating GUI applications. It combines Python with the Qt
library. The Qt library is one of the most powerful libraries at present. You can generate your
GUI with Python scripts and package them into exe and other software platforms running on
windows/mac/linux. Python's wrapper for the cross-platform GUI toolkit Qt implements 440
classes and a combination of 6000 functions and methods. PyQt is implemented as a plugin for
Python.

Analysis Overview
As can be seen in Table 2, the forms of documentation found for PyQt include tutorials, books, a
wiki page, and a Github repository which is not open source. PyQt provides a plugin option
called pytest-qt for utilizing Pytest as a unit testing platform. In terms of this analysis, we shall
consider pytest-qt a builtin testing suite for PyQt. Additionally, PyQt does provide a graphical
interface designer called Qt Designer. Lastly, only three of our teammates has experience with
PyQt.

Documentation Analysis

 Tutorial Books Wiki Repo/Git Open
Source

Total

PyQt 1 1 1 1 0 5

Table 2: Documentation Analysis for PyQt.

Results
● Documentation: ​5
● Testing suite: ​1
● Designer: ​1
● Familiarity:​ 3

8

3.1.2.3 Tkinter
About
Tkinter is Python's default GUI library, and it is also the oldest Python GUI framework. The
standard interface for using the TK GUI tools in Python is already included in the standard
Python installation. In the installation, the well known IDLE is a simple GUI for creating GUIs
using Tkinter. It is easy to learn and use.

Analysis Overview
The Tk GUI toolset bundled with Python is the Tcl code wrapped in Python. It is implemented
by the Tcl interpreter embedded inside the Python interpreter. The Tkinter call is converted to a
Tcl command and then passed to the Tcl interpreter for interpretation to create the GUI interface.
In contrast to Tk and other language bindings, such as PerlTk, it is implemented directly from the
C library in Tk. As can be seen in Table 3, the forms of documentation found for Tkinter include
tutorials, books, a wiki page, and a Github repository which is open source. Tkinter comes with
PyUnit as its builtin unit testing library. Additionally, Tkinter does not provide a graphical
interface designer. Lastly, only one of our teammates has experience with Tkinter.

Documentation Analysis

 Tutorial Books Wiki Repo/Git Open
Source

Total

Tkinter 1 1 1 1 1 6

Table 3: Documentation Analysis forTkinter.

Results

● Documentation: ​6
● Testing suite: ​1
● Designer: ​1
● Familiarity:​ 1

3.1.3 Chosen Approach
As is shown in Table 4, PyQt is our best choice with a score of 10. PyQt has its own Qt designer
which will make creating the layout of the page easy. PyQt can develop a more beautiful
interface and saves us time. It also supports Cross-platform. The Qt library is very powerful and
PyQt allows us to call APIs in the Qt library using Python. The familiarity of these frameworks

9

are the same across all candidates. Despite PyQt not being open source, the documentation of
PyQt is detailed and specific.

Grading Summary: Graphical User Interface Framework

 Documentation Testing Suite Designer Familiarity Overall
Total

Kivy 6 1 1 1 9

PyQt 5 1 1 3 10

Tkinter 6 1 1 1 9

Table 4: Graphical User Interface Framework Results

3.1.4 Proving Feasibility
To prove feasibility, we will make a simple GUI prototype to test whether PyQt will work for
our project. We will run the GUI on a condensed set of F1/10 racing platform files from our
client to test the correctness of our choice. If all the requirements are met, then we can further
develop the GUI by adding everything we need. We will use this prototype to determine if PyQt
is a good fit for our project and is easy for high school students to use.

3.2 Automatic Documentation

3.2.1 Overview of Problem
Since reading documentation is such a big part of helping someone understand of what is going
on with someones code, we need to figure out a good documentation tool to help produce the
best documentation possible. This tool needs to be clean and very readable since we do not want
the user to be confused on what is going on. This tool will help us focus more on creating a
better product instead of writing all of the documentation.

10

3.2.2 Metrics
● Implementation difficulty

○ For the implementation difficulty we will see how hard it is going to create the
auto documentation. This will be done by tracking how long it took to install the
product. Once installed we will look at how many more steps we have to take to
completely have it installed.

○ Scoring Method: 0-5. The score of 0 will mean it was hard to install and a lot of
steps. A score of 5 will be it was easy to install and anyone would be able to
handle this task easily.

● Guidance Level
○ For guidance level we will look at about six different factors that will help

provide strong evidence of guidance if people need it. Each one of these factors
will get a score of 0 for no information and 1 if there was any information at all.

○ One of the factors we are looking at is the release date and we will score this one
different because if it has a date past 5 years ago it will be a zero and anything
newer than 5 years gets a score of 1.

○ We are not looking at how much information we can find in each we just want to
know if there is information out there for people to look for if they need it. Once
we go through and look at all of these factors we will add them up and that will be
the overall total score for Guidance Level.

● Level of Organization
○ For the level of organization we will look at five different factors that will help

provide strong evidence of organization. Each of these factors gets a score of 0 or
1 where 0 means that it is lacking this factor and one being it is in the html
document.

○ The factors are multiple pages, having an index page, clean layout, parameters
that stand out and finally easy to read text. For the multiple pages we are looking
to see if the information is all on one page or if it is across multiple.

○ Another thing that will help us is if there is an index or an index page that will let
the reader go to a specific method that they want to look at.

○ We will look at the layout of the base document to see how easy it is to follow,
which is a big thing to have for people looking at the documentation.Additionally,
we will determine if the parameters stand out easily.

○ Lastly, we will determine the level of ease to read the text on the page.

3.2.2.1 Sphinx
About

11

In 2008 ​Georg Brandl a developer first released sphinx. Sphinx is an auto documentation that
was written in python and mostly used by python but you can use it for other languages also.
Since 2008 and the initial publication of sphinx it now is on version 2.2.0 and that was released
in August of this year.

Analysis Overview
While researching the Sphinx it was really easy to install since all you had to do is just had to use
the environment pip install. After you are done and you want to actually use the tool you have to
run sphinx quickstart. Running the run sphinx quickstart in the terminal is probably the longest
time to get your project set up. What this command does is it prompts the user with questions on
how to set up the settings for the documentation. ​ ​Since these prompts are only done one, when
you are setting up the settings for the project it may take a little time to get used to. When
producing the documentation it can be created two ways, html page or a pdf. While conducting
the research we got the html part of the display down. The pdf version is a little more
complicated so we did not go down that path too much. When looking at the html version of the
documentation it organizes them by class There are plenty of videos out there and other
documentation that you can learn so much from.

Documentation Analysis

 Tutorial Books Wiki Repo/Git Open
Source

Last
Release
Date

Total

Sphinx 1 1 1 1 1 1 6

Table 5: Documentation Analysis for Sphinx .

Organization Analysis

 Multiple
Pages

Index Clean
Layout

Parameters
clear

Readable
text

Total

Sphinx 1 1 1 1 1 5

Table 6: Level of Organization for Sphinx .

Results

● Implementation difficulty: ​4
● Guidance Level: ​6 taken from Table 5.

12

● Level of Organization: ​5 taken from Table 6

3.2.2.2 PyDocs
About
PyDocs is a built-in library in python. Pydoc is a very simple and easy tool to use for creating
documentation. The current version of pydoc is 3.7 which is actually the current version of
python. Pydoc works with both in version 2 and 3. Pydoc is also a helper for specific method . If
you want information about what all goes in with pydoc time for example will give you all the
information you need to know about the method-time.
Analysis Overview
Since PyDocs is built into Python, so there is no installation process unless python isn’t already
installed on the computer. The output for PyDocs is either in the terminal or on a website or a
text file. Printing it to the terminal is not the best since whoever is wanting to read our
documentation would have to run it in the terminal. For our project we are trying to go away
from the terminal. So having this option is not good. Printing to the website would be easier
since as long as you have internet and it was already built you can just look at it. The third way
to produce the documentation is in a text file. This option is another good one but the
organization and readability might be a little harder to read. When researching we just focused
on the html output for PyDocs so we could compare the websites with all the other options.

Documentation Analysis

 Tutorial Books Wiki Repo/Git Last
Release
Date

Total

PyDocs 1 1 1 1 1 5

Table 7: Documentation Analysis for PyDocs .

Organization Analysis

 Multiple
Pages

Index Clean
Layout

Parameters
clear

Readable
text

Total

PyDocs 0 0 1 1 1 3

13

Table 8: Level of Organization for for PyDocs

● Implementation difficulty: ​5
● Guidance Level: ​6,​ ​taken from Table 7.
● Level of Organization: ​3, from Table 8

3.2.2.3 pDoc
About
In 2013 Andrew Gallant created the documentation tool for people to use. This tool is compatible
with both Python 2 and Python 3. The current Python 2 is using 0.3.2 with Python 3 it is 0.7.1.

Analysis Overview
Pdoc is another very simple auto documentation tool. The installation process was super easy
since you all you have to do is pip install it. From there you just put pDoc and the class name that
you want documented. Again like Sphinx you have to have it all documented in your class but
you just call pdoc with your class name it creates an html for that class. So you still need to put
up some work upfront but the website that it creates is super easy to read. With pdoc it includes
the part of the code that it is documenting. I think that is a great functionality because if they
want to see what it actually does they have it right there.

Documentation Analysis

 Tutorial Books Wiki Repo/Git Last
Release
Date

Total

pDoc 1 1 1 1 0 4

Table 9: Documentation Analysis for pDoc

Organization Analysis

 Multiple
Pages

Index Clean
Layout

Parameters
clear

Readable
text

Total

pdoc 0 1 1 1 1 4

14

Table 10: Level of Organization for pdoc .

● Implementation difficulty: ​5
● Guidance Level: ​5​ ​taken from Table 9.
● Level of Organization: ​4 taken from Table 10.

3.2.3 Chosen Approach
In conclusion, we decided to choose Sphinx as our Automatic Documentation. Table 11 shows
that all the total score of 14, 13 and 13 for Sphinx, PyDoc and pDoc respectively. First one is
that you can have the output go to either an html page or even a pdf which is nice if people don’t
have internet, they still can read documentation. Another reason is when looking at pyDoc some
of the websites with tutorials that we looked at were using sphinx to create it when it could of
been the one which they were describing.

Automatic Documentation

 Implementat
ion
difficulty

Level of
Guidance

Level of
Organized

Overall
Total

Sphinx 4 5 5 14

PyDoc 5 5 3 13

pDoc 5 4 4 13

Table 11: Automatic Documentation Results

3.2.4 Proving Feasibility
To prove feasibility we are going to test it with our prototype that we are going to create for the
tech demo for the end of this semester. This will let us know for sure that the choice of Sphinx
for our auto documentation is actually going to work. Testing it this semester will give us more
time to research more over break if there is anything that doesn’t work. During this time of
testing we will continue to look into creating the pdf for the documentation.

15

3.3 Unit Test Library

3.3.1 Overview of Problem
Autonomous racing, within the F1/10 platform, is achieved through a complex communication
system within a network of nodes built from the Robotic Operating System. This means that
coherent communication between nodes is vital for successful systematic operations.
Furthermore, since RosConnect will build nodes determined by user input, it is easy to see that a
platform to test and ensure the successful construction of nodes is necessary.

Unit test libraries enable the required assurances. This leads to the question of which libraries
will be most effective in achieving our goal of testing variation from user input in accordance to
node construction and communication. Furthermore, due to the Python language’s vast libraries
and easy maintainability, we will choose to focus the attention of our analysis to unit test
libraries specifically tailored to the Python programming language. Specifically, we will analyze
the following two unit testing libraries: PyUnit and Pytest.

3.3.2 Metrics
● Examples

○ Unit testing examples will give us an estimate of the thoroughness of
documentation for a given unit testing library. Referring to documented examples
will help expedite the process of producing various unit tests for our system.

○ Scoring Method: 0-5 denoting the number of testing examples provided by
documentation for a given candidate.

● Guidance
○ Multiple references of guidance will help better our understanding of a given

candidate framework by either providing more information than any single
reference or presenting the same information differently.

○ This metric will be based on the following references of guidance: Tutorials,
Books, Wiki, Repository/Git, and Open Source.

○ Scoring Method: 0-5 where 1 point is assigned per provided reference from
above, and 0 is assigned for a reference that is not provided.

● Auto-generation
○ The capability of auto generating tests will be useful in conserving time spent on

producing unit tests.
○ Scoring Method: 0 or 1 refer to “not provided” and “provided”, respectively.

● IDE

16

○ Since RosConnect will build nodes via bash commands that call Python scripts,
we must determine if the unit testing framework requires an IDE to run.

○ Scoring Method: 0 or 1 refer to “required” and “not required”, respectively.

3.3.2.1 PyUnit
About
PyUnit is a Unit Testing framework that operates as the Python language version of JUnit.
PyUnit is incorporated in all versions of Python (after the year 2000) as the keyword unittest.
Since PyUnit is the standard unit test framework that comes with Python, it is a natural candidate
to consider.

Analysis Overview
The implementation of testing examples was relatively easy given that PyUnit is built into
Python and Python had been previously installed on the local testing machine. Since PyUnit
comes with all the latest versions of Python and Python is well documented, there exists
documentation to implement at least a dozen simple example tests. In terms of this analysis, we
implemented five tests in total. The first three tests, provided explicitly by documentation,
involved checking for all uppercase, all lowercase, and the existence of a space between the
substrings “hello” and “world” for the well-known HelloWorld program. Additionally, we
implemented two tests that check if an array of integers is completely fill with even integers and
if an array of integers is completely filled with odd integers. Furthermore, as can be seen in
Table 9 below, we found tutorials, books, and a wiki page for PyUnit, but did not find a reliable
repository or open source resource for PyUnit. Lastly, PyUnit allows for automation of test
generation through a context manager called subTest and an IDE is not required to make/run
tests.

Guidance Overview

 Tutorial Books Wiki Repo/Git Open
Source

Total

PyUnit 1 1 1 0 0 3

Table 12: Guidance Overview Results For PyUnit

Results

● Examples:​ 5
● Guidance: ​3
● Auto-generation: ​1

17

● IDE: ​1

3.3.2.2 Pytest

About
Pytest is an open source Unit Testing framework that operates for the Python programming
language. Pytest 4.6 series is the last to support Python 2.7 and 3.4 while pytest 5.0, the latest
version, will support only Python 3.5+. Since Pytest is used by bigshots such as Dropbox and
Mozilla, it is a natural candidate to consider.

Analysis Overview
The implementation of testing examples for Pytest was extremely easy given that Python had
been previously installed coupled with the fact that there exists easy to read documentation
providing well written examples that was found with a single google search. The examples that
we implemented for this analysis included an uppercase test, lowercase test, and the existence of
a space between the subwords “hello” and “world” for the well-known HelloWorld program.
Additionally, we were able to implement two other tests which included checking for the first
seven primes and checking if each number in an array is prime. Therefore, the total number of
implemented examples was 5. Furthermore, as can be seen in Table 10 below, we found
tutorials, books, a wiki page, and a Github repository which is open source for Pytest. Lastly,
Pytest auto generates tests through a feature that allows parametrizing any fixture and an IDE is
not required to make/run tests.

Guidance Overview

 Tutorial Books Wiki Repo/Git Open
Source

Total

Pytest 1 1 1 1 1 5

Table 13: Guidance Overview Results For Pytest

Results

● Examples: ​5
● Guidance:​ 5
● Auto-generation: ​1
● IDE: ​1

18

3.3.3 Chosen Approach

Grading Summary: Unit Test Library

 Examples Guidance Auto-genera
tes

IDE Total

PyUnit 5 3 1 1 10

Pytest 5 5 1 1 12

Table 14: Unit Test Library Results

In conclusion, we decided to choose Pytest as our Unit Testing Framework. We found that
although the documentation for PyUnit provided 5 well-guided examples (as can be seen in
Table 14), the capability of navigating the documentation was only moderately easy as compared
to Pytest’s documentation. The documentation for Pytest not only provided 5 well-guided
examples but also proved to have a high ease of navigation. For the guidance metric of this
analysis we found that the overall score of 5 for Pytest outweighs the score of 3 for PyUnit.
Furthermore, as denoted in Table 14 with the scores of 3 and 5 for PyUnit and Pytest,
respectively, we contend that the existence of a Github repository and the open-source nature of
Pytest make for a more suitable Unit Testing Library. Our reasoning is that the Github repository
and open-source nature of Pytest simply provide more information to reference as compared to
PyUnit. More information will help expedite the process of understanding how to use a given
candidate framework. Lastly, from Table 14, we see that both candidates scored a 1 for
Auto-generation and IDE giving total scores of 10 and 12 for PyUnit and Pytest, respectively.

3.3.4 Proving Feasibility
A simple way to demonstrate the feasibility of Pytest will be to create a single test node within
the network of nodes built from RosConnect. By inserting a <test> tag in the roslaunch file we
can generate a test node corresponding to said tag. We will then use Pytest to generate unit tests
inside said test node. After roslaunch has been exited, a wrapper for roslaunch named rostest will
intercept all output from Pytest and produce a single Integration test report in XML.

19

3.4 Communication Method

3.4.1 Overview of Problem
We need to choose a connection type that will let us transfer the ROS nodes quickly and reliably.
We then need a connection that is constantly handshaking with the car to make sure we are in
control and can stop the car of our own volition. Our client wants a kill switch implemented as
the F1/10 cars are expensive and can reach speeds that can total the hardware. The car will be
connected to the same network as the Raspberry Pis that are ruining our software. If possible we
might even implement connection redundancies to assure a constant connection. Lastly we need
a way for the ROS nodes on the car to send data back to our software
.
The Robotic Operating System, or ROS, is at the core of our project. The F1/10 car uses ROS on
top of Ubuntu 16 to do everything from driving to using the on board sensor to determine how to
drive itself. Our GUI will send code to the car and allow users to change parameters in these
nodes. The RosCore, or master node, has a variable called the ROS_MASTER_URI. This
variable tells all nodes where they can find the master. We can set the ROS_MASTER_URI
variable to another computers RosCore. This technique is used to run ROS “headless”. For
example, if a robot has a lot of sensors but the onboard computer is not strong enough to
visualize the data it is receiving, you can set the Master Node on the robot to the RosCore
running on your desktop.

The most common way to set the ROS_MASTER_URI is to set it to the “heads” IP address. This
requires that both the head and body be on the same network. Alternatively you can set the
ROS_IP to the IP address of the ad-hoc bluetooth network. The ROS_MASTER_URI
environmental variable is the ROS way to handle communication between two different
machines. Its range depends on what backbone it is placed weather that is Wi-Fi or Bluetooth.
Because our software needs to access the data on the RC car we will have to use the
ROS_MASTER_URI in our project. We will compare BlueTooth and Wi-Fi to determine which
communication method will be best for our project.

3.4.2 Metrics
● Range

○ When considering what forms of communication to use we need to look into the
range of the communication standard. In our case the range is hardware bound to
what is on the Nividia Jetson and the Raspberry Pi. We will rank them based on

20

which is longer with 0 having the shortest distance and 1 having the longest
distance.

● Experience
○ We also want to take into account our teams experience working with the

communication method. For simplicity sake we will use a scale from 0 to 4 with
each point representing a team member who has experience with the given
technology.

● Reliability
○ The reliability of the connection is important. If the connection fails the car

should stop. This could become frustrating as the end users will not have control
over the connections working in the background. We want to consider if there are
multiple timeouts. Do we have to manually reconnect the two devices on a regular
basis? Whats is the communications methods bandwidth? We will use the
following table to determine a reliability metric:

Reliability Analysis

Frequent
Disconnects/Time
outs

Have to set up
multiple times

Transfer Speed Total Score

Yes/No Yes/No 1 for slowest
2 for fastest

Noes + Transfer
Speed Rank

Table 15 : The scoring system for determining the reliability of a communication
method

● Abstraction level
○ Lastly we want to consider on what hardware level the connection runs on. If the

communication method is in the hardware (i.e BlueTooth receiver for the RC car)
it would be better for emergency signaling. We will use a point system where:

■ Runs on the OS +1
■ Runs directly on the hardware +2

21

3.4.2.1 Wi-FI - SSH
About
SSH was created in the 1990’s to replace older methods of connections and communication
protocols. Tatu Ylonen who was a researcher at Helsinki University of Technology in Finland
when there was a hacker who used a password-sniffing attack to get usernames and passwords
from hundreds of students and staff. In response Ylonen started working on Secure Shell which
encrypted all network traffic which was years ahead of the then current plain text traffic. Ylonen
make his work open source and is used all over the word today to provide secure connection to
remote machines.

Analysis Overview
SSH requires that both machines be connected to a network. In our case the car and Raspberry Pi
will be on the same wifi network and all we will need is the ip address of both. If the car and
Desktop where on different networks port forwarding would have to be set up. The Nvidia Jetson
TX2 wifi specs are ​802.11a/b/g/n/ac 2×2 867Mbps which on average has a range of 50 feet
indoors. All the members of our team have experience using SSH and understand how to use it.
One of the downsides to SSH is that the connection can timeout randomly. This varies depending
on the host and remote machine settings as well as the network. In addition if the IP address of
the Nvidia Jetson changes the new IP address has to replace the old IP listed on the Machine that
is remoting in. SSH also runs on the OS level and only works if the Nvidia Jetson is connected to
a network.

SSH is a powerful tool that can allow us to transfer files to the car and run command line
arguments. It requires that both the car and the Raspberry PI be connected to a network and for
static ip address or a way for updating the ip address on both the cars OS and our GUI. SSH
would allow us to easily push files from our GUI to the car but might not be the best solution for
keeping a constant handshake.

Results

● Range: ​0
● Experience: ​4
● Reliability: ​2
● Abstraction Level: ​1

22

3.4.2.2 Bluetooth
About
Bluetooth was originally designed to replace RS-232 cables which are used for serial port
connections in 1989 and more specifically Nils Rydbeck, the original mind behind the new form
of communication, wanted to develop a wireless headset. Originally named “short-link” until an
employee at Intel proposed the name Bluetooth after a 10th centry Danish king who united all of
the Danish tribes into one kingdom. This embodied the concept of new communication system
that united a variety of communication protocols. In fact even the Bluetooth logo is the bind rune
merging King Harald Bluetooth’s initials. Bluetooth has come a long way since its inception
with more than 4 billion devices with Bluetooth technology expected to ship in 2019.

Analysis Overview
The Raspberry Pi 4 has the newest version of the Bluetooth protocol, Bluetooth 5. Bluetooth 5 is
rated to cover distance from 100ft to 1000ft depending on the environment which is around 3
times the previous protocols range. Files can be transferred over Bluetooth with speeds up to
2Mbps making it slower than the average WiFi based options but 2 times faster than Bluetooth
4.2. On the upside is that bluetooth is meant to maintain a connection with one device being able
to potentially wake another. No one on our team has implemented Bluetooth into software but
we all have experience using it as consumers. Bluetooth has the potential to be accessed from a
hardware level but the F1/10 cars bluetooth module is on the Nvidia Jetson making it OS bound
for our application. It is also important to note that ROS can send and receive data over
Bluetooth.

Bluetooth is a truly dynamic communication method that can allow multiple devices to connect
to one another directly with no middleman like Wi-Fi. While its data transfer speed is not as fast
as Wi-FI it does have a range advantage. There is also no need to work about changing IP
address or identifiers. Implementing Bluetooth would give us a reliable connection to the car at
all times and can be used to trigger the kill switch that the client has requested. We can also have
nodes that post topics on a Bluetooth connection and nodes that subscribe to that topic on another
Bluetooth connected device.

Results

● Range: ​1
● Experience: ​ 0
● Reliability: ​3
● Hardware Level: ​1

23

3.4.3 Chosen Approach
Due to the nature of ROS we will have to use the ROS Master URI communication, the question
is whether to use Wi-Fi or Bluetooth for the underlying network. Bluetooth offers farther range
but at the cost of speed and doesn't require keeping track of IP addresses. On the other hand,
Wi-Fi is faster but has less range in addition to having to deal with changing IP addresses. For
the backend of the ROS communication we will go with Wi-Fi. This allows us to SSH to send
the files needed to the car and run commands on the F1/10 car. We need to SSH into the car to
execute bash scripts that will run the roslaunch command with all previously sent files. This
script will also set the ROS_MASTER_URI variable to our desktops current IP address. A script
on board of the car will keep track of which connections are active. Should all communication
channels close this script will initiate a kill command.

GUI F1/10 Car Communication Methods

 Range of
connectivity

Familiarity Reliability Abstraction
Level

Overall
Total

Wi-FI SSH 0 4 2 1 7

Blue- tooth 1 0 3 1 5

Table 16: GUI F1/10 Communication Methods Results

3.4.4 Proving Feasibility
Now that we know how we are going to communicate with the car our next step is a working
prototype where we can send files to the car, maintain a connection to the car and get data back.
Using multiple forms of communication allows us to have redundancy in case one of the
connections fails. Our prototype needs to be able to send a kill command to the car as it is one of
the few specific features our client has requested.

24

4. Technology Integration

4.1 Overview
We need to provide a layer of abstraction between ROS and the F1/10 platform so that high
school students can work with autonomous racing technology. While creating this abstraction
between ROS and the car we have to make sure everything still runs smoothly. Our software also
needs a communication method to connect to the F1/10 car. We want to make sure our code is
reliable and bug free. In addition, we want extensive documentation for our code so that it can be
understood and used by many developers after us.

4.2 Integration Challenges
When we are integrating our GUI and the car we will address the various hardware connections
involved. On the car in the raspberry pi there is going to be a couple of USB ports that we can
use if we need to connect a keyboard and mouse. The Raspberry Pi also has an HDMI cable for
direct connection and so we are able to see the output on the screen and work directly with the
hardware. The other option is using the computer/GUI to connect to the car using wifi to SSH
into the car to start everything that way.

One of the main challenges is connecting to the car when the lidar is on already. If this is the
case right now we have to disconnect the lidar and then connect via SSH and then restart it so it
will be able to use it. Another integration challenge we face is lost connection with wifi on the
car. If the car loses wifi we need to make sure that it will be able to still stop since we may not
have control over the car anymore. The GUI that we create will hold functionality with ROS.
So, our GUI will have to communicate with the Raspberry Pi and Jetson Nividan board so it
knows when something has started. Table 17 below shows a flow chart of hardware connections
in the system and our communication method’s role in this system.

25

Table 17: Hardware integration diagram.

26

5. Conclusion

RosConnect will correct the need for high school student exposure to autonomous technology by
providing a new GUI with intuitive design, and we are confident in our ability to build the
RosConnect application by the end of this project. In Table 18, we list the challenges, solutions,
and our confidence level that a given solution will perform as expected.

Challenges and Solutions

Tech Challenges Solution Confidence Level Backup Solution

GUI PyQt High Kivy

Auto
Documentation

Sphinx High pDoc

Unit Test Library Pytest High PyUnit

Communication
Methods

Wi-Fi Medium Add Bluetooth

Table 18: Results of our Challenges with backup solutions and how confident we are
about them.

Our presented solutions are straight-forward and robust. PyQt is the go-to graphical user
interface for the Python programming language. Sphinx provides an easy-to-use platform for
implementing readable documentation for future users, and Pytest is considered the
run-anything, no-required-api testing framework. Our major hurdle will be utilizing Wi-Fi as the
communication method between RosConnect and the F1/10 vehicle. Immediate next steps in
overcoming said hurdle will be to create a simple prototype that maintains connection to the car,
for some predetermined amount of time, while we transfer data and receive data from the car. In
conclusion, we are excited and eager to provide this great application called RosConnect that
will make high school student’s hopes and dreams come true!

27

